

Indian Institute of Engineering Science

and Technology (IIEST), Shibpur

 Botanic Garden, Howrah

Department of Computer

Science and Technology

Postgraduate Programmes

Course Structure and Syllabus

(Effective from 2025-26 admitting batch onwards)

Page 2 of 63

Contents
Course Structure 3

Catalogue of Courses 7

Catalogue of Engineering Science Courses 7

Catalogue of Basic Science Courses 7

Catalogue of Humanities and Social Science Courses 7

Catalogue of Value Added Courses 8

Catalogue of Program Core Courses 8

Catalogue of Program Specific Elective Courses 8

Catalogue of Open Elective Courses 9

Syllabi of Courses 10

Page 3 of 63

Course Structure

First Semester

L T P

1 BSC Engineering Mathematics – I 3 1 0 4 4 100

2 BSC Chemistry 3 0 0 3 3 100

3 ESC Introduction to Computing CS 1101N 3 0 0 3 3 100

4 ESC Basic Electronics 3 0 0 3 3 100

5 VAC Well-being and Happiness 2 0 0 2 2 50

6 HSC Professional communication in English 2 1 0 3 3 100

Theory Sub-total 16 2 0 18 18 550

7 ESC Workshop 0 0 3 2 3 50

8 ESC Computer Programming Practice Lab CS 1171N 0 0 3 2 3 50

9 BSC Chemistry Lab 0 0 3 2 3 50

10 NSS/NCC/PT/Yoga R*

Practical Sub-total 0 0 9 6 9 150

First Semester Total 16 2 9 24 27 700

*R: Required (Non-credit but with grade)

Sl. No. Type Course Name Course code
Class Load/Week

Credit Class load/ week Marks

Second Semester

L T P

1 BSC Engineering Mathematics – II 3 1 0 4 4 100

2 BSC Engineering Physics 3 0 0 3 3 100

3 ESC Basic Electrical Engineering 3 0 0 3 3 100

4 ESC Introduction to AI and ML CS 1202N 3 0 0 3 3 100

5 VAC Energy, Environment and Climate Change 2 0 0 2 2 50

6 PC Data Structures CS 1203N 3 0 0 3 3 100

Theory Sub-total 17 1 0 18 18 550

7 ESC Engineering Graphics 0 0 3 2 3 50

8 BSC Physics Lab 0 0 3 2 3 50

9 ESC Basic Electrical Engineering Lab 0 0 3 2 3 50

10 PC Data Structure Lab CS 1273N 0 0 3 2 3 50

11 NSS/NCC/PT/Yoga R*

Practical Sub-total 0 0 12 8 12 200

Second Semester Total 17 1 12 26 30 750

*R: Required (Non-credit but with grade)

Sl. No Credit Class load/ Week MarksType Course Name Course code
Class Load/Week

Third Semester

L T P

1 BSC Mathematics III 3 0 0 3 3 100

2 ESC Physics of Materials 3 0 0 3 3 100

3 PC Object Oriented Programming and Design CS 2101N 3 0 0 3 3 100

4 PC Digital Logic CS 2102N 3 0 0 3 3 100

5 PC Discrete Structures CS 2103N 3 0 0 3 3 100

Theory Sub-total 15 0 0 15 15 500

6 P Mini Project-I CS 2191N 0 0 3 2 3 50

7 ESC Physics of Materials Lab 0 0 3 2 3 50

8 PC Object Oriented Programming and Design Lab CS 2171N 0 0 3 2 3 50

9 PC Digital Logic Lab CS 2172N 0 0 3 2 3 50

Practical Sub-total 0 0 12 8 12 200

Third Semester Total 15 0 12 23 27 700

Sl. No Type Course Name Credit Class load MarksCourse
Class Load

Fourth Semester

Course

Code L T P

1 PC Theory of Computation CS 2201N 3 0 0 3 3 100

2 PC Computer Architecture & Organization CS 2202N 3 0 0 3 3 100

3 PC Database Management System CS 2203N 3 0 0 3 3 100

4 PC Design & Analysis of Algorithm CS 2204N 3 0 0 3 3 100

5 OE OE1 (From Pool-1) 3 0 0 3 3 100

Theory Sub-total 15 0 0 15 15 500

6 P Mini Project-II CS 2291N 0 0 3 2 3 50

7 PC Computer Architecture & Organization Lab CS 2272N 0 0 3 2 3 50

8 PC Database Management System Lab CS 2273N 0 0 3 2 3 50

9 PC Design & Analysis of Algorithm Lab CS 2274N 0 0 3 2 3 50

Practical Sub-total 0 0 12 8 12 200

Fourth Semester Total 15 0 12 23 27 700

MarksClass load/ weekSl. No Type Course Name
Class Load/Week

Credit

Page 4 of 63

Catalogue of Courses

Catalogue of Engineering Science Courses (ESC)

Sl. No. Course Code Course Name

1 CS 1101N/CS 1201N Introduction to Computing

2 CS 1171N/CS 1271N Computer Programming Practice Lab

 3 CS 1102N/CS 1202N Introduction to AI and ML

Catalogue of Program Core (PC) Courses

Sl. No. Course Code Course Name

1 CS 1203N Data Structures and Algorithms

2 CS 1273N Data Structures and Algorithms Lab

3 CS 2101N Object Oriented Programming and Design

4 CS 2102N Digital Logic

5 CS 2103N Discrete Structures

6 CS 2171N Object Oriented Programming and Design Lab

7 CS 2172N Digital Logic Lab

8 CS 2201N Theory of Computation

9 CS 2202N Computer Architecture & Organization

10 CS 2203N Database Management Systems

11 CS 2204N Design & Analysis of Algorithm

12 CS 2272N Computer Architecture and Organization Lab

13 CS 2273N Database Management Systems Lab

14 CS 2274N Design & Analysis of Algorithm Lab

Page 5 of 63

Catalogue of Open Elective(OE) Courses

Sl.

No.

Course

Code
Course Name

1 CS 2261N Data Structures and Algorithms

2 CS 2262N Object Oriented Technology

Page 6 of 63

Syllabi of Courses

Page 7 of 63

FIRST SEMESTER

Page 8 of 63

Course

Code

CS1101N/CS1201

N
Course

Name

Introduction to

computing

Course

Category
ESC

L T P

3 0 0

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department Name of the Department
Data Book /

Codes/Standards

Nil

Course Objectives

Upon completing this course, students will be able to:

1. Understand the basics of computer systems,

2. Use a computer for basic tasks,

3. Understand the fundamentals of programming,

4. Develop problem-solving skills.

Page 9 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Number system and Codes:

Positional & non positional number systems,

Binary, Octal, Hexadecimal number system and

Conversion, Representation of negative numbers

& real numbers, Fixed and floating point

numbers. Characteristics codes (ASCII,

EBCDIC etc.) and others like Grey, Excess-3 etc.

6 Understand the basics of computer

systems.

II Arithmetic and Logic:

Logic operations & gates, Half adder. & full

adder subtraction using add. Repetitive addition

and subtraction to accomplish multiplication &

division etc.

5 Understand the fundamental logic

operations and basic logic gates

used in digital circuits.

III Computer Organisation:

CPU, Memory and I/O devices – Commonly

used peripherals.

Role of the CPU, Memory and I/O devices in

the context of solving a problem.

6 Understand the structure and

functioning of the central

processing unit (CPU), memory

hierarchy, and commonly used

input/output (I/O) devices.

IV Problem Solving Steps and Program

Development Cycle:

Systematic decomposition, Flowchart,

Algorithm, the three constructs (sequential,

conditional and iterative). Edit, compilation,

Debugging & execution.

3 Learn how to solve problems.

V Introduction to Programming in C:

Idea of High level, Assembly level & M/c level

language.

Interpretation and compilation. Variables and

data types (basic), simple programs, assignment,

decision, loops, scope: Global & local, control

structure (if, if-else, switch, for, while, do while,

break and continue) Structural data type (Array,

record, file, set etc.), Function, Recursion,

Pointers, Introduction to dynamic data structure.

18 Understand how to write and

analyze simple C programs using

variables, basic data types, control

structures (if, if-else, switch,

loops), and functions, including

recursion.

Course Outcome

CO1: Knowledge of the various parts in a modern computer system.

CO2: Knowledge of the representation of numbers and basic operations on numbers in

computer

CO3: Knowledge of basic logic gates and logic operations.

CO4: Ability to write programs in C programming language.

CO5: Ability to use basic data structures such as arrays and structures in programs.

Page 10 of 63

Learning

Resources

References and Books:

1. Brian Kernighan and Dennis Ritchie, "The C Programming Language", 2nd Edition,

Prentice Hall India

2. Gottfried Byron S, "Programming with C", Schaum's Outlines Series, Tata Outlines

Series, Tata McGraw-Hill

Page 11 of 63

Course

Code
CS1171N/CS1271N

Course

Name

Computer

Programming

practice Lab

Course

Category
ESC

L T P

0 0 3

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department Name of the Department
Data Book /

Codes/Standards

Nil

Course Objectives

Upon completing this Lab, students will be able to:

1. Develop practical programming skills,

2. Apply programming concepts,

3. Use programming tools and environments,

4. Analyze and solve problems,

5. Improve coding skills

Module Syllabus Duration

(class-hour)

Module Outcome

I Introduction to Linux commands, vi editor and

program writing and executing

6 Able to understand the

fundamental concepts of Linux

platform

II Assignments on conditional statements 3 Able to understand the conditional

statements and their usefulness

III Assignments on control structure - I 3 Able to understand the conditional

statements and their usefulness

IV Assignments on control structure - II 3 Able to understand the conditional

statements and their usefulness

V Assignments on structural data type (Array,

record)

6 Able to understand the concept of

Array and its applications

VI

 Assignments on function and recursive function

6 Able to understand the concept of

function and use of function

VII

Assignments on dynamic data structure

3 Able to understand the concept of

dynamic data structure

VIII

Assignments on file handling and file operations 3 Able to learn the file handling

concepts

Page 12 of 63

Course Outcome

CO1: Ability to use Linux-based systems, basic Linux shell commands, editors, Linux

reference manual, and so on

CO2: Ability to select appropriate data structure and algorithm for solving simple problems.

CO3: Ability to use the data structures and implement the algorithms, compile and execute

programs

CO4: Knowledge of techniques to debug various types of errors in programs

Learning

Resources

References and Books:

1. Brian Kernighan and Dennis Ritchie, "The C Programming Language", 2nd Edition,

Prentice Hall India

2. Gottfried Byron S, "Programming with C", Schaum's Outlines Series, Tata Outlines

Series, Tata McGraw-Hill

3. Python Crash Course: A Hands-On, Project-Based Introduction to Programming (2nd

Edition)

4. Python Programming: An Introduction to Computer Science (4th Edition)

Page 13 of 63

SECOND SEMESTER

Page 14 of 63

Course

Code

CS1102N/CS1202

N
Course

Name

Introduction to AI

and ML
Course

Category
ESC

L T P

3 0 0

Pre-requisite

Courses

Mathemati

cs,

programmi

ng, and

statistics

Co-requisite

Courses
 Progressive Courses

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

(i) Students should able to know about the history of AI and basic principles of AI

(ii) Student also able to know some basic algorithms of ML

(iii) Students should understand the different applications of AI/ML.

Page 15 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Introduction: Definitions of AI and ML, Brief

history and evolution, Difference between AI, ML,

and Deep Learning, Types of AI - Narrow vs.

General, Types of ML - Supervised, Unsupervised,

Reinforcement Learning

5 a) Define and distinguish

between Artificial

Intelligence (AI),

Machine Learning (ML),

and Deep Learning, and

explain their

interrelationships.

b) Describe the historical

evolution of AI and ML,

highlighting key

milestones and paradigm

shifts in the field.

c) Classify the types of AI

(Narrow AI vs. General

AI) and types of ML

(Supervised,

Unsupervised,

Reinforcement Learning)

with relevant examples.

II

Understanding Data: Importance of data in

AI/ML, Types of data (structured vs unstructured),

Data collection, labelling, and ethics, Basic data

visualization

5 a) Explain the role and

significance of data in

the development and

performance of AI/ML

models.

b) Differentiate between

structured and

unstructured data with

examples relevant to real-

world AI applications.

c) Demonstrate awareness

of ethical considerations

in data collection and

labeling, and perform

basic data visualization

using appropriate tools or

techniques.

Page 16 of 63

III

Core Concepts in Machine Learning:
Features and labels, Model training and testing,

Overfitting and under fitting (basic intuition),

Concept of accuracy, precision, recall (basic)

5 a) Identify and explain the

roles of features and

labels in machine learning

datasets and models.

b) Describe the basic

process of model

training and testing, and

recognize the concepts of

overfitting and under

fitting using simple

examples.

c) Interpret basic

evaluation metrics such

as accuracy, precision,

and recall to assess model

performance.

IV

Popular Algorithms: Linear Regression

(basic prediction), Decision Trees, K-Means

Clustering, Introduction to Neural Networks, Case

studies (domain-specific)

7 a) Explain the basic

working principles of

key machine learning

algorithms such as Linear

Regression, Decision

Trees, and K-Means

Clustering.

b) Apply selected

algorithms to simple

prediction and

classification tasks, using

domain-specific case

studies.

c) Develop a basic

understanding of neural

networks and their role in

modern AI applications

(introductory level).

V

Ethics, Bias & Impact of AI: AI fairness and

bias, Data privacy concerns, Automation and jobs,

Social, ethical, and legal implications

3 a) Identify and discuss

ethical concerns related

to AI, including bias,

fairness, and data privacy.

b) Analyze the societal and

legal implications of AI

adoption, particularly in

the context of automation,

employment, and

decision-making systems.

Page 17 of 63

VI

Future of AI & Career Opportunities:
Interdisciplinary research and roles, AI trends-

generative AI, conversational AI, robotics, Skills

and career paths

3 a) Identify emerging trends

and technologies in AI,

such as generative AI,

conversational AI, and

robotics, and understand

their potential impact

across industries.

b) Explore

interdisciplinary roles

and career paths in AI,

and recognize the key

skills required for various

AI-related professions.

VII Basic Python Programming: Introduction to

Python, Python Syntax & Basic Constructs,

Operators, Control Flow, Loops, Data Structures -

Lists, Tuples, Dictionaries, Sets, Functions -

Definition, Parameters and return values, Built-in

functions, Lambda functions, Scope of variables,

Strings - String creation and manipulation, String

methods, String formatting, File Handling -

Opening, reading, writing files, Modes, File

pointers and closing files, Exception Handling.

Case study of AI/ML problems using Python

14 a) Write and execute

Python programs using

fundamental constructs,

including variables,

operators, control flow

statements, loops, and

functions with parameters

and return values.

b) Utilize core data

structures such as lists,

tuples, dictionaries, and

sets to organize and

manipulate data

effectively in Python

programs.

c) Perform file handling

operations and

implement exception

handling to read

from/write to files safely

and manage runtime

errors gracefully.

Course Outcome

CO1: To understand the fundamental concepts of Artificial Intelligence (AI) and Machine

Learning (ML), including their capabilities and limitations.

CO2: To identify real-world problems that can be addressed using AI and ML techniques

and formulate problem-solving approaches.

CO3: To explore different methods for representing knowledge and information for

automated reasoning in AI systems.

CO4: To learn how to design and apply heuristic functions for solving AI problems

efficiently.

CO5: To gain a foundational understanding of data, data types, and basic data analysis

techniques for building predictive AI/ML models.

CO6: Learn how to write and execute Python programs and develop efficient solutions of

AI/ML problems using Python.

Page 18 of 63

Learning

Resources

References and Books:

● Machine Learning - Theory and practice M N Murty and Anantharayana V S

● Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

● Artificial Intelligence Rich and Knight

● Explorations in Artificial Intelligence and Machine Learning

https://www.routledge.com/rsc/downloads/AI_FreeBook.pdf

● Artificial Intelligence With an Introduction to Machine Learning By Richard E.

Neapolitan, Xia Jiang

● Learning Python by Mark Lutz — A comprehensive and detailed book covering

Python fundamentals deeply.

● Python Programming: An Introduction to Computer Science” by John Zelle —

Introduces computer science concepts through Python, often used in academia.

https://www.routledge.com/rsc/downloads/AI_FreeBook.pdf
https://www.routledge.com/search?author=Richard%20E.%20Neapolitan
https://www.routledge.com/search?author=Richard%20E.%20Neapolitan
https://www.routledge.com/search?author=Xia%20Jiang

Page 19 of 63

Course

Code
CS1203N

Course

Name
Data Structures

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses

Mathemati

cs,
Programmin

g in C

Co-requisite

Courses
Nil Progressive Courses

Algorithm,

OOPD

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

i) Understand and explain the fundamental concepts of data structures and their role in

algorithm development and software design.

ii) Analyze time and space complexity of algorithms using Big-O notation to evaluate

performance.

iii) Implement and apply linear data structures such as arrays, linked lists, stacks, and queues

in problem-solving.

iv) Understand and use non-linear data structures like trees and graphs, including traversal

and searching techniques.

v) Select and design appropriate data structures for various computational problems to

improve efficiency and scalability.

Page 20 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Abstract Data Type (ADT) and Algorithm:

ADT - concepts of data types, data structure and

ADT, properties applicable for ADT. Algorithm

– Properties, Concepts of Time and Space

complexity

4 Understand the concepts of Abstract

Data Types (ADT), their properties,

and analyze algorithm efficiency

using time and space complexity.

II Linked Lists: Linear Linked List, Circular

Linked List, Doubly Linked List, Multi-List,

Applications

5 Understand the types, operations,

and applications of linear, circular,

doubly, and multi-linked lists.

III Stacks and Queues: Concepts and Applications 5 Understand the concepts,

operations, and applications of

stacks and queues.

IV Recursion: Difference between Recursion and

Iteration, Design of Recursive Algorithms

2 Understand the difference between

recursion and iteration, and design

recursive algorithms.

V Trees: Binary Trees. Properties, Binary Tree

Traversals, Expression Trees, Conversion from

General Tree to Binary Tree. Binary Search

Trees and Operations on BST, Balanced Tree –

AVL trees, Red-Black trees, B-Trees.

10 Understand the structure, properties,

and traversals of binary trees,

expression trees, and conversions

from general trees to binary trees.

Analyze and implement operations

on binary search trees, balanced

trees.

VI

Heap: Heap data structure and priority Queues 3 Understand the heap data structure

and its application in implementing

priority queues.

VII

Graph: Representations of Graph, Graph

Traversal and its Applications

3 Understand graph representations,

perform graph traversals, and apply

them to solve real-world problems.

VIII

Sorting: Insertion Sorts, Exchange Sorts,

Selection Sort, Merge Sort, Distribution Sort.

Comparisons of Different Sorting Algorithms.

4 Understand and implement various

sorting algorithms and compare

their performance based on time

and space complexity.

IX Searching: Sequential Search, Sequential Search

in Ordered List, Binary Search.

4 Understand and implement various

searching techniques and compare

their efficiency in different

scenarios.

X Hashing: Hashing functions, collision resolution

techniques.

2 Explain hashing concepts, design

hash functions, and implement

collision resolution techniques for

efficient data retrieval.

Page 21 of 63

Course Outcome

CO1: Ability to select and design data structures and algorithms that are appropriate for a

given problem.

CO2: Ability to gauge how the choice of data structures and algorithm design methods

impacts the performance of programs.

CO3: Ability to analyze algorithms and to determine algorithm correctness and complexities.

CO4: Skill to identify the scope for improving the performance (in terms of algorithmic

betterment) of a given application.

CO5: Ability to choose an appropriate algorithm out of different alternative algorithms for a

given problem.

Learning

Resources

References and Books:

● Data Structures using C and C++ by Y. Langsam, M. Augenstein And A. M.

Tenenbaum

● Data Structures and Program Design in C by R. Kruse and B. Leung

● Fundamentals of Data Structures in C by E. Horowitz, S. Sahni, S. Anderson-Freed

● Data Structures – A Pseudocode Approach with C++ by R. F. Gillbert and B. A.

Forouzan

Page 22 of 63

Course

Code
CS1273N

Course

Name
Data Structures Lab

Course

Category
PC

L T P

0 0 3

Pre-requisite

Courses

Programmin

g in C

Co-requisite

Courses

Data

Structures
Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

i) Provide hands-on experience in implementing basic data structures such as arrays, stacks,

queues, linked lists, trees, and graphs using C programming language.

ii) Strengthen the ability to solve computational problems efficiently by choosing and

applying the most appropriate data structures.

iii) Encourage analytical thinking by evaluating the time and space complexity of algorithms

and understanding trade-offs in different data structure implementations.

iv) Apply concepts of Abstract Data Types (ADT) to design modular, reusable, and

maintainable code for solving real-world problems.

Page 23 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Review of Computing Practice: Assignments

using recursive and non-recursive functions on

Array, etc.

3 Develop and debug recursive and

non-recursive functions to solve

problems using arrays and

fundamental programming

constructs.

II Assignments based on Stack and its

Applications

6 Implement stack operations and

apply them to solve problems like

parenthesis matching, expression

conversion, and postfix evaluation.

III Assignments on linked lists (linear, circular,

doubly linked list, etc): Implementation and

applications.

6 Implement and manipulate various

types of linked lists and apply them

to solve real-world data organization

problems.

IV Assignments on queues (circular queue, priority

queue): Implementation and applications.

6 Implement circular and priority

queues and apply them to model and

solve scheduling and resource

management problems.

V Assignments on trees (binary tree, binary search

tree, balanced trees): Implementation, creation,

operations, applications, etc.

6 Implement and perform operations

on various tree structures, applying

them to expression evaluation and

efficient data storage.

VI

Assignments on search algorithms (sequential,

binary and interpolation) on ordered and/or

unordered data. Hashing

 6 Implement and analyze sequential,

binary, and interpolation search

techniques on different data sets, and

design hashing methods for efficient

data retrieval.

VII

Assignments on sorting algorithms (recursive

and non-recursive algorithms): bubble sort,

insertion sort, selection sort, mergesort,

quicksort, etc.

6 Implement and compare various

recursive and non-recursive sorting

algorithms to understand their

efficiency and applications.

VIII

Assignments on graph: Representations,

Implementations and Applications

3 Implement graph representations and

algorithms, and apply them to solve

problems

Page 24 of 63

Course Outcome

CO1: Ability to choose appropriate algorithm for solving a problem by comparing different

implementations for the same purpose

CO2: Realization of the suitability and importance of appropriate data structures for solving a

problem.

CO3: Ability to implement algorithms for some well-known computer science problems

CO4: Given any unknown problem, ability to design algorithms to solve the problem, and

implement the algorithms using appropriate data structures.

CO5: Ability to develop small functions / modules, and subsequently achieve bigger tasks

using smaller functions that have been developed.

Learning

Resources

References and Books:

● Data Structures using C and C++ by Y. Langsam, M. Augenstein And A. M.

Tenenbaum

● Data Structures and Program Design in C by R. Kruse and B. Leung

● Fundamentals of Data Structures in C by E. Horowitz, S. Sahni, S. Anderson-Freed

● Data Structures – A Pseudocode Approach with C++ by R. F. Gillbert and B. A.

Forouzan

Page 25 of 63

THIRD SEMESTER

Page 26 of 63

Course

Code
CS2101N

Course

Name

Object oriented

Programming and

Design

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses
Data

Structures

Co-requisite

Courses
Nil Progressive Courses

All subjects related

to programming

Course Offering

Department
Name of the Department

Data Book /

Codes/Standards

Nil

Course Objectives

1. To introduce various programming paradigms and highlight the evolution and

rationale for object-oriented programming.

2. To develop a strong understanding of core object-oriented concepts and apply them

effectively using C++.

3. To instill good software design principles, UML modeling skills, and promote

modular, reusable, and maintainable code development.

4. To familiarize students with common design patterns and test-driven development

practices for building robust and scalable software.

Page 27 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Programming Paradigms and Evolution

Introduction to Programming Paradigms:

Imperative, Functional, Logic, and Object-

Oriented. Strengths and trade-offs of each

paradigm. Evolution of programming languages

and rationale for OOP.

2 Understand various programming

paradigms, their strengths and

trade-offs, and the evolution

leading to the adoption of object-

oriented programming.

II Foundations of Imperative and OOP

Concepts in Imperative Programming: Variables,

assignment, control structures, state.

Problems with procedural code: code reuse,

maintainability, and software crisis.

Principles of Object-Oriented Programming:

Abstraction, Encapsulation, Inheritance,

Polymorphism.

4 Grasp the core concepts of

imperative programming,

recognize its limitations, and

understand how object-oriented

principles address these

challenges.

III C++ Basics and OOP Constructs

Overview of C++ syntax relevant to OOP.

Classes, objects, constructors, destructors.

Encapsulation and data hiding.

Member functions and access specifiers.

Operator Overloading and Function Overloading.

Static members, friend functions, inline functions.

10 Learn the foundational C++

syntax and object-oriented

constructs to effectively design

and implement encapsulated,

modular, and reusable code.

IV Inheritance and Polymorphism

Single and multiple inheritance.

Constructor and destructor call order.

Virtual functions and dynamic (runtime)

polymorphism.

Abstract classes and interfaces.

Virtual base classes and diamond problem.

10

Understand inheritance and

polymorphism in C++, including

single and multiple inheritance,

virtual functions, and mechanisms

to resolve complexities like the

diamond problem.

V Object-Oriented Design and UML

Object-oriented design principles.

UML Basics: Class Diagrams, Sequence

Diagrams

Design Concepts: Coupling and Cohesion,

Modularity and Reusability

6 Apply object-oriented design

principles using UML to create

modular, cohesive, and reusable

software systems

VI Software Design Principles

SOLID, DRY, KISS

5 Understand and apply key

software design principles like

SOLID, DRY, and KISS to create

efficient, maintainable, and

scalable code.

Page 28 of 63

VII Design Patterns and TDD

Introduction to Design Patterns: Singleton, Factory,

Strategy

Introduction to Test-Driven Development (TDD)

5 Learn fundamental design patterns

and the principles of Test-Driven

Development to build robust,

flexible, and well-tested software

solutions.

Course Outcome

CO1: Understand and compare various programming paradigms and the evolution that led to

the adoption of object-oriented programming.

CO2: Apply object-oriented principles such as encapsulation, inheritance, polymorphism, and

abstraction using C++ to design and develop modular and maintainable code.

CO3: Analyze and implement object-oriented design concepts using UML diagrams and

software design principles like SOLID, DRY, and KISS.

CO4: Demonstrate the use of design patterns and Test-Driven Development to create robust,

reusable, and well-tested software systems.

Learning

Resources

References and Books:

● The C++ Programming Language by Bjarne Stroustrup

● Object-Oriented Analysis and Design with Applications by Grady Booch

● Thinking in C++ (Volume 1) by Bruce Eckel

Course

Code
CS2102N

Course

Name
Digital Logic

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses

HS standard

Mathematics

and Physics

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Page 29 of 63

Course Objectives

Students learn the followings:

1. The difference between Analog and Digital systems

2. The number systems, logic gates and Boolean algebra

3. The representation, manipulation and minimization of Boolean functions

4. How to design combinational and sequential circuits

5. The concepts of finite state machines, state minimization, and state machines

6. The analysis and synthesis of asynchronous circuits.

Page 30 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

After completion of each module,

the students should have a clear

understanding the following

I Number Systems and Binary representations:

Number System and Conversion, Signed and

Unsigned Binary Number Representation, Binary

Addition and Subtraction, BCD and Gray Code

Representation, Floating-point Number

Representation

3

How numbers are represented in

computer and their manipulation

using computer, Representation of

information using binary code

II Boolean Algebra and Logic gates: Basic

theorems and properties of Boolean algebra,

Boolean functions, Canonical and Standard forms,

Other logic operations (AND, OR, NOR, NAND,

NOR, EX-OR and EX-NOR)

3
The properties of switching

algebra, Manipulation of Boolean

expressions using Boolean

algebra, about the different forms

of switching functions

III Simplification of Boolean Functions: Map

Method, Product of sum simplification, NAND

and NOR Implementation, Don’t- care Conditions,

Tabulation method

3

How to systematically simply the

switching functions using

Karnaugh maps and Quine

McCluskey method

IV Combinational Logic: Introduction, Design

procedure, Adders, Subtractors Code conversion,

Analysis procedure, Multilevel NAND and NOR

circuits, Exclusive-OR and Equivalence Functions

Binary Parallel adder, Decimal adder, Magnitude

comparator, Decoders and Multiplexers.

 9

How to design different

combinational logic circuits and

how to implement the circuits

using Universal logic gates

and how to implement the

combinational circuits using basic

building block such as mux and

demux

VI

Sequential Logic: Flip-flops, Triggering of flip-

flops, Analysis of Clocked sequential circuits, State

reduction and assignment, Flip-flop excitation tables,

Design procedure, Design with state equations,

Registers, Shift-registers, Ripple counters

Synchronous counters.

12

How to design sequential logic

circuits and also implement them

using Flip-flops and logic gates

VII

Digital Integrated Circuits: Diode as switch. Use of

diodes in AND, OR circuits, Transistor as a switch.

RTL, DTL, TTL logic gate circuits. MOS as a switch.

Basic MOS inverter. MOS and CMOS logic gates. Fan-

in and Fan-out of logic gates, propagation delay, Tristate

logic.

8

About different Logic families,

How to implement logic gates

using transistors, diodes and

resistors

VIII Testing: Testing of Digital Circuits, Fault Modeling,

Test Generation Pattern, Design for Testability and

Built-in Self-Test

4
Familiarization of fault model,

Test pattern generation and build-

in-self-test

Page 31 of 63

Course Outcome

After completion of this course, the students should do the following:

1. Design and implementation of combinational circuits such as adder, subtractor, code

converter, comparator etc.

2. Design and implementation of sequential circuits such as Flip-flop, register, counter

etc.

3. Implementation of universal logic gates using transistors, diodes and resistors

Learning

Resources

1. Digital Logic and Computer Design - M Morris Mano, Pearson India Education Pvt.

Ltd(Old Edition)

2. Fundamentals of Logic Design - Charles H. Roth, Fourth Edition, Jaico Publishing House

3. Switching and Finite Automata Theory- Kohavi and Jha, Third Edition, Cambridge

University Press

Page 32 of 63

Course

Code
CS2103N

Course

Name
Discrete Structures

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses

Mathematics -

I & II
Co-requisite

Courses
Nil Progressive Courses

Design & Analysis

of Algorithms,

Theory of

Computation,

Graph Algorithms,

Database

Management

Systems.

Course Offering Department Name of the Department
Data Book /

Codes/Standards

Nil

Course Objectives

1. To get familiar and understand the fundamental notions in discrete mathematics.

2. To describe binary relations between two sets; determine if a binary relation is

reflexive, symmetric, or transitive or is an equivalence relation; combine relations

using set operations and composition.

3. To understand and demonstrate the basic concept of an algorithm and its application

in combinatorial mathematics.

4. To identify the base step and the recursive or inductive step in applied problems and

give a recursive and a non-recursive definition for an iterative algorithm

5. To identify the basic properties of graphs and trees and model simple applications.

Page 33 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Logic:

Propositional Logic: Syntax, Semantics, Validity

and Satisfiability, Basic Connectives and Truth

Tables, Logical Equivalence: The Laws of Logic,

Logical Implication, Rules of Inference, Use of

Quantifiers.

8 -Use rules of logic to understand the

meaning of mathematical statements and

reason with them.

-Construct valid mathematical arguments

from propositions

II Proof Methods:

Proof Methods and Strategies, Forward Proof, Proof

by Contradiction, Proof by Contraposition, Proof of

Necessity and Sufficiency, The Well-Ordering

Principle, Proof by Induction, Strong Induction.

8 -Undestand the use case for different

proof techniques

-Apply these techniques to solve both

mathematical and computer science

problems

III Sets, Relations, and Functions:

Operations and Laws of Sets, Cartesian Products,

Binary Relation, Closures of Relations, Partial

Ordering Relation, Equivalence Relation, Image

of a Set, Sum and Product of Functions, Bijective

Functions, Inverse and Composite Function, Size

of a Set, Finite and Infinite Sets, Countable and

Uncountable Sets, Cantor's Diagonal Argument,

Power Set theorem..

10 -Familiarization with different

discrete structures and understanding

their uses in various fields of

computer science - like data

structures, algorithms, DBMS, etc.

IV Combinatorics:

The basics of counting, Pigeonhole Principle,

Permutations & Combinations, Advanced Counting

Techniques - solving linear recurrence relations and

their application in analyzing algorithms, generating

functions and their use to solve combinatorial

problems.

8 -Apply basic counting techniques

such as the sum and product rules,

and use the Pigeonhole Principle to

solve fundamental combinatorial

problems.

-Analyze and solve linear recurrence

relations, with applications in

recursive and divide-and-conquer

algorithms

-Construct and manipulate

generating functions to represent

sequences, and use them to solve

combinatorial problems.

V Graphs and Trees:

Graphs and their properties, Degree, Connectivity,

Path, Cycle, Graph Representation, Subgraph,

Isomorphism, Graph coloring, Matching, Eulerian

and Hamilton circuits; Trees: Introduction to Trees,

Application of Trees, Spanning Tree.

8 -Understand modeling and solving of

real-life problems in form of graphs

and trees

Course Outcome

CO1: Distinguish between the notion of discrete and continuous mathematical structures

CO2: Use proper proof technique to prove mathematical statements/theorems

CO3: Apply induction and other proof techniques towards problem solving

CO4: Solve problems in Computer Science using graphs and trees

Page 34 of 63

Learning

Resources

1. Kenneth Rosen, Discrete Mathematics and Its Applications, 7th Edition, McGraw Hill

Publishing Co., 2017.

2. Susanna S. Epp., Discrete Mathematics with Applications, 4th edition, Brooks/Cole Pub Co,

2010.

3. C. L. Liu and D. P. Mohapatra, Elements of Discrete Mathematics: A Computer Oriented

Approach, 3rd Edition, Tata McGraw-Hill, 2017.

Page 35 of 63

Course

Code
CS2171N

Course

Name

Object Oriented

Programming and

Design Lab

Course

Category
PC

L T P

0 0 3

Pre-requisite

Courses

 Data

Structures
Co-requisite

Courses

Object

oriented

Programmi

ng and

Design

Progressive Courses
All subjects related

to programming

Course Offering Department Name of the Department
Data Book /

Codes/Standards

Nil

Course Objectives

1. To develop proficiency in C++ programming through practical implementation of

object-oriented concepts such as classes, objects, inheritance, and polymorphism.

2. To apply software design principles like encapsulation, modularity, and reusability in

solving real-world problems C++ constructs.

3. To enhance problem-solving and debugging skills by integrating design patterns,

templates, exception handling, and basic test-driven development practices.

Page 36 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Basics of C++ and Programming Paradigms:

Introduction to C++ syntax. Input/output

operations. Control structures (if-else, loops)

6 Write basic C++ programs using

control structures and recognize

the foundational differences

between imperative and object-

oriented approaches.

II Functions, Classes, and Objects: Functions:

definition. call by value/reference. Defining classes

and objects. Constructors and destructors

6 Create classes with

constructors/destructors and

modularize code using functions

and objects.

III Encapsulation and Overloading: Access specifiers:

public, private, protected. Getter/setter methods.

Operator overloading (arithmetic, stream).

Function overloading

6 Implement encapsulation and

enhance class usability through

operator and function

overloading.

IV Inheritance: Single and multilevel inheritance.

Constructor and destructor order. Accessing base

class members

6 Demonstrate code reuse and

relationship modeling using

inheritance and understand object

construction flow.

V Polymorphism and Virtual Functions: Function

overriding. Base class pointers and dynamic

binding. Virtual functions and abstract classes

6 Apply runtime polymorphism

using virtual functions and design

abstract interfaces.

VI Templates and Exception Handling: Function and

class templates. Try, catch, throw for exception

handling. User-defined exceptions

6 Write generic programs using

templates and implement robust

error handling using exceptions.

VII Design Patterns / TDD: Use basic design patterns

(e.g., Singleton or Factory). Introduce test-driven

development (write test cases before

implementation)

3 Integrate object-oriented

programming, design patterns,

and basic testing to build a

functional and well-structured

application.

VII Development of a use-case as a project following

the principles of Object Oriented Design

3 Designed and developed a

complete use-case-driven project

applying Object-Oriented Design

principles.

Course Outcome

CO1: Implement fundamental object-oriented programming concepts such as classes, objects,

constructors, and encapsulation using C++.

CO2: Apply inheritance, polymorphism, and operator overloading to design reusable and

extendable C++ programs.

CO3: Demonstrate the use of templates, exception handling, and UML diagrams to model and

develop robust and generic software solutions.

CO4: Design and develop a project using object-oriented principles, basic design patterns, and

test-driven development techniques.

Page 37 of 63

Learning

Resources

References and Books:

● The C++ Programming Language by Bjarne Stroustrup

● Object-Oriented Analysis and Design with Applications by Grady Booch

● Thinking in C++ (Volume 1) by Bruce Eckel

Course

Code
CS2172N

Course

Name
Digital Logic Lab

Course

Category
PC

L T P

0 0 3

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

Students learn the followings:

1. Design and implementation of Logic gates (different logic families) using

diodes, transistors, and resistors

2. Design and implementation of combinational circuits (Adder, subtractor,

parity generator/checker) using universal logic gates.

3. How to implement Boolean function using multiplexer and

decoder/demultiplexer.

4. Design and implementation of sequential circuits (latches, flip-flops,

counters) using universal logic gates.

Page 38 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Logic family: Implementation of OR and AND

gates using diodes. Study on characteristics of

DTL and TTL inverters using discrete

components, Study on characteristics of TTL and

CMOS gates

14 Students should able to

implement different Logic gates

using diodes, transistors, and

resistors

II Combinational logic circuits: Design and

implementation of combinational circuits such as,

Adders, comparators, parity generator and

checker.Implementation of Boolean functions

using multiplexer and decoder/demultiplexer.

14 Students should be able to design

and implement combinational

circuits such as adder, subtractor,

parity generator/checker using

universal logic gates. They should

also implement Switching

Function using multiplexer and

decoder/demultiplexer.

III Sequential circuits: Study of latch and flip-flop,

design of counters.

14 Students should be able to

implement latches and flip-flops

using logic gates.

Course Outcome

After completion of this course, the students should do the following:

Design and implementation of combinational circuits such as adder, subtractor,

comparator etc. using universal logic gates. They should also implement Switching

Function using multiplexer and decoder/demultiplexer.

Design and implementation of sequential circuits such as Latches, Flip-flop using

logic gates.

Implementation of universal logic gates using transistors, diodes and resistors

Learning

Resources

Laboratory Manual

Page 39 of 63

FOURTH SEMESTER

Page 40 of 63

Course

Code
CS2201N

Course

Name

Theory of

computation
Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses

Discrete

Structures
Co-requisite

Courses
Nil Progressive Courses

Compiler Design,

Natural Language

Processing

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

1. To give an overview of the theoretical foundations of computer science and

limitations of different computational models

2. To illustrate finite state machines to solve problems in computing

3. To explain the hierarchy of problems arising in the computer sciences.

4. Ultimately enabling students to analyze algorithms

Page 41 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Introduction: Computations, Different models of

computation, Language recognizer and generator

2 To learn about different model of

computation

II Regular Languages: Finite Automata –

Deterministic and non-deterministic, Regular

expression, regular grammar, Equivalence of regular

languages, Pumping lemma, Myhill-Nerode

Theorem, Minimization of FSM, Properties of the

class of Regular languages, Decision algorithm for

regular sets.

12 To learn about finite automata

(DFA, NFA), their properties, and

their relationship to regular

languages and also the limitations

of this model

III Context Free Language: Context free grammers

(CFG) and languages (CFL), Parse trees,

Ambiguous, unambiguous and inherently

ambiguous grammars, Normal Forms (Chomsky and

Greibach), simplification of CFG, Pushdown

automata (deterministic and non-deterministic),

Acceptance of language by empty stack, final state

and their equivalence, Properties of the class of

CFLs, Proving a language to be CFL or not, Pumping

lemma for CFG, Decision algorithm for CFG

12 Comprehend the definition of

CFG, its relationship to languages

and automata, and the Chomsky

hierarchy, constructing CFGs for

given languages,

Recognize that not all languages

are context-free and understand

the limitations of CFGs

IV Recursive and Recursively enumerable

Language: Unrestricted grammar, Computable

function, Turing Machines (deterministic and non-

deterministic), Equivalence of deterministic and non-

deterministic TM, Extensions og TM and their

simulations, Universal TM, Halting problem of TM,

Decidability, Non-computability, Complexity

classes, notion of reductions

10 Knowing about Turing machine

model,

Understanding limits of

computation, including

decidability and undesirability.

Understand the concepts of

complexity theory, including P,

NP, and NP-complete problems

Course Outcome

Upon successful completion of this course, students will be able to

1. Give the mathematical definition of various computational models and state and

prove their limitations.

2. explain the notion of nondeterminism, reductions and the idea of NP-Completeness.

Learning

Resources

Referred Books:

1. J. E. Hopcroft, R. Motwani, & J. D. Ullman Introduction to Automata Theory,

Languages, and Computation, Third Edition, Pearson, 2008.

2. Denial I. A. Cohen Introduction to Computer Theory, Second Edition, John Wiley &

Sons, 1997.

3. “Introduction to Languages And The Theory Of Computation” John C Martin

Page 42 of 63

Course

Code
CS2202N

Course

Name

Computer

Architecture and

Organization

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses
Digital Logic

Co-requisite

Courses
 Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

To make students familiar with the

● Principles and implementation of computer arithmetic.

● Operations of CPU, ALU, instruction cycle and buses.

● Fundamentals of different instruction set architectures and implementation in CPU.

● Memory system/storage and I/O organization.

● Principles of high speed computation and multiprocessor systems.

Page 43 of 63

Module Syllabus Duration

(class-

hour)

Module Outcome

I Introduction: History of computing, von Neumann

machine, Instruction and data, fixed-point and floating-

point numbers, errors, IEEE standards.

4
Witnessing the history of

computing, generations of

computer systems, and learning

the basics of number systems and

representations of numbers.

II Processor design: Instruction Set Architecture -

Instruction format, opcode optimization; operand

addressing; Instruction implementation - data

movement, branch control, logical, Input/output and

debugging instructions; arithmetic instruction

implementation – addition and subtraction,

multiplication-division, 2’s complement multiplication;

Booth’s algorithm – theory and examples; bit-pair

algorithm; high performance arithmetic.

8
Learning of designing an

instruction set for a

CPU/processor and their

(arithmetic/logical/data

movement/program control/etc

instructions) implementation in

hardware.

III
Control unit design: Hardwired control, micro-

programmed control design – micro-instruction formats,

control optimization.

6
Learning the design of control unit

to explore the detailed functioning

of the CPU/processor.

IV Memory subsystem: Memory technology, memory

interfacing, memory interleaving, Memory hierarchy –

introduction to virtual memory system; cache –

performance, address mapping, coherence; content

addressable memory (CAM).

10
Knowledge about memory cell

and memory module design,

characterization of different types

of memories, the interfacing

techniques of memory modules

with CPU/processor, high speed

memory system design.

V
Peripherals: Basic properties, bus architectures,

interfacing of I/O devices, data transfer schemes –

programmed I/O, DMA, mass storage, RAID.

6
Characterization of I/O devices,

exploring I/O interface and data

transfer mechanisms between

CPU and I/O, knowledge about

the mass storage attached to the

computing system.

VI

Pipelining: Pipelining data path and instructions, speed

up, CPI, latency; linear/non-linear pipeline – reservation

table, MAL; hazards, super-pipelined and super- scalar

processors; multiprocessor system architecture.

8
Knowledge about the

parallelization schemes in

processor execution to speed up,

computing models and

bottlenecks.

Page 44 of 63

Course Outcome

Upon successful completion of this course, students will be able to

● Follow the architecture of modern computers, and how the m/c performs

arithmetic/logical operations.

● Implement different arithmetic/logical/register transfer instructions.

● Understand the detailed functioning of the CPU.

● Exemplify the memory organization and its communication with CPU.

● Exemplify I/O devices and its communication with CPU.

● Understand the properties of mass storage attached to the computing unit.

● Learn principles of modern high speed computation, computing models and

bottlenecks.

Learning

Resources

1. Computer Architecture and Organization, John P. Hayes, McGraw Hill.

2. Computer System Architecture, M. Morris Mano, Pearson.

3. Advanced Computer Architecture: Parallelism, Scalability, Programmability, Kai Hwang,

McGraw Hill.

Page 45 of 63

Course

Code
CS2203N

Course

Name

Database

Management

System

Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses

Data

Structures
Co-requisite

Courses
Nil Progressive Courses

Software

Engineering

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

 The objectives of the course are to

 Equip students with strong foundation in database and database management systems

concepts with an emphasis on how to organize, maintain and retrieve data efficiently

from a database

 Focus on database design theory using ER modelling, Normalization and lossless

decomposition

 Cover Transaction processing and Recovery techniques

Page 46 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Database and Database Management System:

Traditional File systems versus Database systems,

database users, Role of Database Administrators

(DBA), Concepts of the 3-level architecture,

Features of DBMS.

3 Ability to understand the overall

domain of database management

systems (DBMS) with the

emphasis on the

difference between database and

DBMS.

II Entity Relationship Model: High-level

conceptual modelling, ER Modelling concepts,

Cardinality constraints, Weak-entity types,

Subclasses and inheritance, Specialization and

Generalization, Conversion of ER diagram into

relations and Database Design Guidelines

4
Ability to apply design guidelines

for designing relational schemas

towards improving data integrity,

reducing redundancy and

anomalies.

III Relational Model, Languages and Systems:

Relational algebra, Relational Calculus, Relational

model concepts, ER to relational mapping, Data

definition, manipulation and related queries in

SQL, Views, Integrity constraints.

6
Prepare students with the

knowledge to design, implement,

and maintain relational databases

efficiently.

IV Formal Database Design: Concept of functional

dependencies, Normal forms based on Functional

Dependency (FD), Multi-valued Dependency and

Join Dependency, Lossless decomposition,

Dependency Preservation, Canonical cover of a set

of FD.

8
Equip students to transform

application requirements into a

logical and physical database

model.

V Indexing Structures: Basic terminologies,

Different types of indexes, B-trees, B+ trees.

3
Gather knowledge about how to

store and retrieve data efficiently

towards improving

searching/update performance

VI

Transaction Processing and Concurrency

Control: Concurrency issues, need for

transactions, Transactions properties, Transaction

states, Serializability, Locking, Deadlocks and

starvation, Lock-based protocols, Timestamp-

ordering based protocol,

5
Ability to handle concurrent

transactions while ensuring data

integrity.

VII

Database Recovery Techniques: Recovery

concepts, Deferred updates technique, Immediate

update technique.

3
To be familiar with the

techniques of restoring a database

from a failure to a consistent state

while maintaining data integrity.

VIII

Query Processing and Optimization: Basic

query operations, Heuristics in query optimization,

cost estimates in query optimization.

3
Transform queries into an

efficient form towards

minimizing query execution time

Page 47 of 63

IX Database Security and Authorization:

Discretionary access control, Mandatory access

control and multi-level security, Statistical

database security

3
Identify the need of database

security and challenges involved

and implement them through

efficient management of user

access and privileges.

X Advanced Topics in DBMS: Introductory

overviews on Distributed Databases, Object

Oriented Databases, Need for non-relational

databases, Types of NoSQL databases -

Document, Key-Value, Column-Family, Graph.

Key features and comparisons with relational

databases, Basic operations - insert, retrieve,

update, delete.

4

Ability to understand the need of

database paradigms other than

relational model, grasp the

differences in basic concepts and

applications over the

conventional relational databases

Course Outcome  CO1: Ability to design entity-relationship diagrams to represent simple
database application scenarios

 CO2: Skill to convert entity-relationship diagrams into relational tables
(database design), populate a relational database and formulate SQL
queries on the data

 CO3: Crosscheck and improve the design by normalization
 CO4: Master the basics of query evaluation techniques and query

optimization
 CO5: Understanding the role of transaction processing and concurrency

control application development

Learning

Resources

Referred Books:

1. Database System Concepts – Silberschatz, Korth, and Sudarshan (McGraw Hill).

2. Fundamentals of Database Systems – Elmasri, and Navathe (Benjamin Cummings

Publishing Company Inc.).

3. Principles of Database Systems – J. D. Ullman (Galgotia Publications (P) Ltd.).

4. Database Systems – C. J. Date (Addison Wesley).

5. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence -

Pramod J. Sadalage, Martin Fowler (Addison-Wesley).

Page 48 of 63

Course

Code
CS2204N

Course

Name

Design & Analysis

of Algorithm
Course

Category
PC

L T P

3 0 0

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

 To introduce advanced ideas in design of algorithms;

 To study the performance guarantees of algorithms;

 to understand complexity classes, To introduce methods for coping with NP-

hard problems.

Page 49 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Mathematical Foundations and Basic of

Complexities: Time and Space complexity,

Asymptotic growth of functions, Recurrences and

methods of solving recurrences (substitution,

iteration, recursion tree, Master method). Worst,

Average and Amortized complexities.

4 To equip the students with

mathematical foundation that are

needed to analyze algorithm.

II Design and Analysis techniques: Divide and

Conquer, Dynamic programming, Greedy

Algorithms

4 To state different algorithm

design techniques

III Example Algorithms for divide and conquer

approach: finding minimum and second

minimum, Quick sort, Merge sort

4 To explain divide and conquer

technique in detail

III Sorting and Order Statistics: Quicksort and

Merge Sort Complexity analysis as divide and

conquer strategy, Lower bound for comparison

based sorting, sorting in linear time (Counting,

Radix and Bucket sort), Selection of Medians and

ranked elements and their complexity

4 To explain algorithm to find

element of any rank and

thereby using it in quick sort

IV Example Algorithms for dynamic

programming: Matrix chain multiplication,

Longest common subsequence, Polygon

triangulation.

6 To explain dynamic programming

technique in detail

V Example Algorithms for greedy strategy

(selective list, not exhaustive): Data compression,

Matroid based formulation, Scheduling algorithm

4 To explain greedy strategy in

detail

VI

Advanced Data Structures and applications:

Data structures for dynamic sets, Hashing and

associated search complexity, Data structures for

disjoint sets, Complexity of union and find

operations.

4 Understanding the advantage of

modifying a data structure to

improve the performance of

certain operation

VII

Graph algorithms: Connected components of

graph, Minimum Spanning Trees of graph, Single

source and all-pair shortest paths

4 To be familiar with graph

algorithm with few examples

VIII

Number theoretic algorithm: Fast

exponentiation, GCD algorithm, Primality testing

algorithm, Handling large size integers,

Algorithms for public key cryptography

4 To introduce number theoretic

algorithm and there use in public

key cryptography

IX Concept of NP-Completeness: Polynomial-time

verification, Concept of NP-hard and NP-

completeness, Notion of approximation

Algorithms for NP-complete problems

4 To build understanding of NP-

completeness.

Page 50 of 63

Course Outcome

CO1: To comprehend and select algorithm design approaches in a problem
specific manner.
CO2: To develop sound theoretical understanding of advanced algorithms and
practical problem solving skills using them
CO3: To understand the necessary mathematical abstraction to solve problems.
CO4: To come up with analysis of efficiency and proofs of correctness

Learning

Resources

References:
1. Introduction to Algorithms, 3rd Edition,Thomas H. Cormen, Charles E. Leiserson, Ronald

L. Rivest, Clifford Stein, MIT Press 2009, ISBN 978-0-262-03384-8.

2. Algorithm Design. Kleinberg, Jon, and Éva Tardos, Addison-Wesley, 2006.

https://dblp.org/pid/l/CELeiserson.html
https://dblp.org/pid/r/RonaldLRivest.html
https://dblp.org/pid/r/RonaldLRivest.html
https://dblp.org/pid/s/CliffordStein.html

Page 51 of 63

Course

Code
CS2261N

Course

Name

Data Structures and

Algorithms
Course

Category
OE

L T P

3 0 0

Pre-requisite

Courses

Mathemati

cs,
Programmin

g in C

Co-requisite

Courses
None Progressive Courses

Algorithm,

OOPD

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

i) Understand and explain the fundamental concepts of data structures and their role in

algorithm development and software design.

ii) Analyze time and space complexity of algorithms using Big-O notation to evaluate

performance.

iii) Implement and apply linear data structures such as arrays, linked lists, stacks, and queues

in problem-solving.

iv) Understand and use non-linear data structures like trees and graphs, including traversal

and searching techniques.

v) Select and design appropriate data structures for various computational problems to

improve efficiency and scalability.

Page 52 of 63

Module Syllabus Duration

(class-hour)

Module Outcome

I Abstract Data Type (ADT) and Algorithm:

ADT - concepts of data types, data structure and

ADT, properties applicable for ADT. Algorithm –

Properties, Concepts of Time and Space

complexity

4 Understand the concepts of

Abstract Data Types (ADT), their

properties, and analyze algorithm

efficiency using time and space

complexity.

II Linked Lists: Linear Linked List, Circular Linked

List, Doubly Linked List and their applications

5 Understand the types, operations,

and applications of linear, circular,

doubly, and multi-linked lists.

III Stacks and Queues: Concepts and Applications 5 Understand the concepts,

operations, and applications of

stacks and queues.

IV Recursion: Difference between Recursion and

Iteration

2 Understand the difference

between recursion and iteration.

V Trees: Binary Trees. Properties, Binary Tree

Traversals, Expression Trees, Conversion from

General Tree to Binary Tree. Binary Search Trees

and Operations on BST, Balanced Tree – AVL

trees

10 Understand the structure,

properties, and traversals of binary

trees. Analyze and implement

operations on binary search trees,

balanced trees.

VI

Heap: Heap data structure and priority Queues 3 Understand the heap data structure

and its application in

implementing priority queues.

VII

Graph: Representations of Graph, Graph

Traversal and its Applications

3 Understand graph representations,

perform graph traversals, and

apply them to solve real-world

problems.

VIII

Sorting: Insertion Sorts, Exchange Sorts,

Selection Sort, Merge Sort. Comparisons of

Different Sorting Algorithms.

4 Understand and implement

various sorting algorithms and

compare their performance based

on time and space complexity.

IX Searching: Sequential Search, Sequential Search

in Ordered List, Binary Search. Hashing and

Hashing functions, collision resolution techniques.

6 Understand and implement

various searching techniques and

compare their efficiency in

different scenarios. Understanding

hash based search.

Page 53 of 63

Course Outcome

CO1: Ability to select and design data structures and algorithms that are appropriate for a

given problem.

CO2: Ability to gauge how the choice of data structures and algorithm design methods

impacts the performance of programs.

CO3: Ability to analyze algorithms and to determine algorithm correctness and complexities.

CO4: Skill to identify the scope for improving the performance (in terms of algorithmic

betterment) of a given application.

CO5: Ability to choose an appropriate algorithm out of different alternative algorithms for a

given problem..

Learning

Resources

Referred Books:

1. Data Structures using C and C++ by Y. Langsam, M. Augenstein and A. M.

Tenenbaum

2. Data Structures and Program Design in C by R. Kruse and B. Leung

3. Fundamentals of Data Structures in C by E. Horowitz, S. Sahni, S. Anderson-Freed

4. Data Structures – A Pseudocode Approach with C++ by R. F. Gillbert and B. A.

Forouzan

Page 54 of 63

Course

Code
CS2262N

Course

Name

Object Oriented

Technology
Course

Category
OE

L T P

3 0 0

Pre-requisite

Courses

Data

Structures
Co-requisite

Courses
Nil Progressive Courses

All subjects related

to programming

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

1. To introduce various programming paradigms and highlight the evolution and

rationale for object-oriented programming.

2. To develop a strong understanding of core object-oriented concepts and apply them

effectively using C++.

3. To instill good software design principles, UML modeling skills, and promote

modular, reusable, and maintainable code development.

4. To familiarize students with common design patterns and test-driven development

practices for building robust and scalable software.

Page 55 of 63

Module Syllabus Duration

(class-

hour)

Module Outcome

I Programming Paradigms and Evolution

Introduction to Programming Paradigms:

Imperative, Functional, Logic, and Object-

Oriented. Strengths and trade-offs of each

paradigm. Evolution of programming languages

and rationale for OOP.

4 Understand various programming

paradigms, their strengths and

trade-offs, and the evolution

leading to the adoption of object-

oriented programming.

II Foundations of Imperative and OOP

Concepts in Imperative Programming: Variables,

assignment, control structures, state.

Problems with procedural code: code reuse,

maintainability, and software crisis.

Principles of Object-Oriented Programming:

Abstraction, Encapsulation, Inheritance,

Polymorphism.

6 Grasp the core concepts of

imperative programming,

recognize its limitations, and

understand how object-oriented

principles address these

challenges.

III C++ Basics and OOP Constructs

Overview of C++ syntax relevant to OOP.

Classes, objects, constructors, destructors.

Encapsulation and data hiding.

Member functions and access specifiers.

Operator Overloading and Function Overloading.

Static members, friend functions, inline functions.

12
Learn the foundational C++

syntax and object-oriented

constructs to effectively design

and implement encapsulated,

modular, and reusable code.

IV Inheritance and Polymorphism

Single and multiple inheritance.

Constructor and destructor call order.

Virtual functions and dynamic (runtime)

polymorphism.

Abstract classes and interfaces.

Virtual base classes and diamond problem.

14 Understand inheritance and

polymorphism in C++, including

single and multiple inheritance,

virtual functions, and mechanisms

to resolve complexities like the

diamond problem.

V Object-Oriented Design and UML

Object-oriented design principles.

UML Basics: Class Diagrams, Sequence Diagrams

Design Concepts: Coupling and Cohesion,

Modularity and Reusability

6 Apply object-oriented design

principles using UML to create

modular, cohesive, and reusable

software systems

Page 56 of 63

Course Outcome

CO1: Understand and compare various programming paradigms and the evolution that led to

the adoption of object-oriented programming.

CO2: Apply object-oriented principles such as encapsulation, inheritance, polymorphism, and

abstraction using C++ to design and develop modular and maintainable code.

CO3: Analyze and implement object-oriented design concepts using UML diagrams

Learning

Resources

References and Books:

● The C++ Programming Language by Bjarne Stroustrup

● C++ Primer by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo

● Object-Oriented Analysis and Design with Applications by Grady Booch

● Thinking in C++ (Volume 1) by Bruce Eckel

Page 57 of 63

Course

Code
CS2272N

Course

Name

Computer

Architecture and

Organization Lab

Course

Category
PC

L T P

0 0 3

Pre-requisite

Courses

Digital logic

laboratory
Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

To provide students

● Hands-on experience in understanding the fundamental principles of computer

systems.

● Developing practical skills in designing, implementing, and evaluating different units

of computer systems.

● Expertise in digital design.

Page 58 of 63

Module Syllabus Duration

(class-

hour)

Module Outcome

I Memory design and test

(Two experiments)

12 Become familiar with design of

memory module and read/write

operation of the memory and

verification of the data written.

II Implementation of simple CPU instructions

(One experiment)

6 Hands-on experience to realize

simple instructions of instruction

set architecture of a CPU.

III Realization of data transfer among CPU registers

and main memory

(One experiment)

6 Becoming familiar with and

realization of data transfer

between buffer (DR) of CPU and

main memory (RAM) and

external world.

IV Design of simple ALU

(One experiment)

6 Expertise to design high speed

adder/subtractor (and cascading)

for ALU of the CPU.

V Microprogrammed control design

(One experiment)

6 Familiarization with

a) Register level data transfer

through common bus, and

b) Microprogrammed realization

of the register level data transfer.

VI Hardwired control design

(One experiment)

6 Developing expertise on relatively

complex hardware design to

explore functioning of the CPU.

Course Outcome

Upon successful completion, the students will be able to

● Design and verify different combinational/sequential circuits.

● Learn the testing of the memory subsystems.

● Design simple ALU of a CPU.

● Demonstrate the design of a simple instruction set computer.

Learning

Resources

1. Computer System Architecture, M. Morris Mano, Pearson.

2. Laboratory manuals.

Course

Code
CS2273N

Course

Name
DBMS Lab

Course

Category
PC

L T P

0 0 3

Page 59 of 63

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department CST
Data Book /

Codes/Standards

Nil

Course Objectives

1. Understand and apply SQL for creating and managing relational databases.

2. Perform DDL, DML, and complex queries using SQL clauses and joins.

3. Implement PL/SQL blocks, cursors, triggers, and stored procedures.

4. Manage transactions and user access using SQL commands.

5. Use basic NoSQL database operations.

Page 60 of 63

Module Syllabus Duration

(class-

hour)

Module Outcome

I

SQL using Relational Databases

1. Create databases and tables using DDL commands,

Implement constraints.

2. Insert, update, and delete records using DML

commands.

3. Retrieve data using SELECT queries with

WHERE, ORDER BY clauses.

4. Use aggregate functions and GROUP BY,

HAVING clauses.

5. Perform different types of joins between tables.

6. Perform nested queries and subqueries.

8. Create and use views, indexes, and sequences.

9. Implement transactions using COMMIT,

ROLLBACK, and SAVEPOINT.

10. Creating Database Users, Use of DCL commands

GRANT and REVOKE.

21 Students will be able to design and

manage relational databases using

SQL by creating tables, applying

constraints, performing data

manipulation and retrieval, using

joins and subqueries, managing

views and indexes, handling

transactions, and controlling

access with DCL commands.

II Procedural flavour with PL/SQL

Writing PL / SQL code blocks, Cursors and Triggers,

Writing PL / SQL Stored Procedures.

12 Students will be able to develop

procedural programs using

PL/SQL by writing code blocks,

implementing cursors and triggers,

and creating stored procedures.

III

NoSQL (eg. MongoDB) using Non-Relational

Databases

1. Create a database and collections using

MongoDB.

2. Perform basic CRUD operations on documents.

3. Query documents using filters, projections, and

conditions.

4. Work with embedded documents and arrays.

5. Create indexes and perform basic aggregation

queries.

9 Students will be able to use

NoSQL to create databases and

collections, perform CRUD

operations, query documents,

handle embedded data structures,

and apply indexing and basic

aggregation techniques.

Course Outcome

CO1: Create and manage relational databases using SQL.

CO2: Retrieve and manipulate data using queries and joins.

CO3: Implement PL/SQL code with cursors, triggers, and procedures.

CO4: Handle transactions and manage database users.

CO5: Use of NoSQL operations to handle non-relational databases..

Page 61 of 63

Learning

Resources

Referred Books:

1. SQL, PL/SQL: The Programming Language of Oracle - Ivan Bayross (BPB

Publications).

2. Oracle PL/SQL Programming - Steven Feuerstein (O’Reilly Media, 6th Edition).

3. MongoDB: The Definitive Guide - Kristina Chodorow, Michael Dirolf (O’Reilly

Media, 3rd Edition).

Page 62 of 63

Course

Code
CS2274N

Course

Name

Design and

Analysis of

Algorithm Lab

Course

Category
PC

L T P

0 0 3

Pre-requisite

Courses
Nil

Co-requisite

Courses
Nil Progressive Courses Nil

Course Offering Department Name of the Department
Data Book /

Codes/Standards

Nil

Course Objectives

The objective of this laboratory course is to provide hands-on experience in implementing

and analyzing fundamental algorithms using appropriate programming languages. Through

practical exercises, students will develop the skills to evaluate the time and space complexity

of algorithms, compare different approaches to problem-solving, and enhance their ability to

write efficient and optimized code.

Module Syllabus Duration

(class-

hour)

Module Outcome

I Experimentation of Various comparison sort

algorithms and comparing their efficiencies

6 To implement various sorting

algorithm in a programming

language

II Applications of Divide-and-Conquer 9 To gain hands on experience of

the algorithm

III Applications of Dynamic Programming 6 To gain hands on experience of

the algorithm

IV Applications of Greedy algorithms 6 To gain hands on experience of

the algorithm

V

Implementation of graph algorithms 9 To gain hands on experience of

different algorithm such minimum

spanning trees

VI

Implementation of few approximation algorithm 6 To gain hands on experience of

few approximation algorithm

Page 63 of 63

Course Outcome

By the end of this course, students will be able to:

CO1. Implement fundamental algorithms using appropriate programming languages and

development tools.

CO2. Apply algorithmic techniques such as divide-and-conquer, greedy strategies, dynamic

programming, and backtracking to solve real-world problems.

CO3. Analyze the time and space complexity of algorithms through empirical testing and

theoretical reasoning.

CO4. Compare the performance of different algorithms for the same problem to determine

the most efficient approach.

CO5. Demonstrate the ability to debug, test, and optimize code for better performance and

scalability.

Learning

Resources

References:

1. Introduction to Algorithms, 3rd Edition,Thomas H. Cormen, Charles E. Leiserson, Ronald

L. Rivest, Clifford Stein, MIT Press 2009, ISBN 978-0-262-03384-8.

2. Algorithm Design. Kleinberg, Jon, and Éva Tardos, Addison-Wesley, 2006.

